
Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Writing interesting CTF Services
and good testscripts

Hans-Christian Esperer, CDA
hc@hcesperer.org

2. Oktober 2008

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

ToC

1 Writing interesting CTF Services
Common misconceptions
Design principles
Some examples

2 Writing good testscripts
Overview
Formalities
Using the testscript template

3 Using the gameserver
Installation
Configuration
The game

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Common misconceptions

Writing a CTF service is a neat programming exercise

Writing bad code will
”
automatically add“ vulnerabilities

Choosing an unknown programming language does the trick

Using an exotic unix flavor makes a CTF more interesting

Leave the testing to the teams

”
The hard work is done, now there’s just the testscript left“

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Common misconceptions debunked

Intimate language knowledge leads to better services

”
Good“ vulnerabilities can only be added to nicely written

code

(Ab)using features of exotic progamming languages makes a
CTF more interesting

Use a platform your services run well on

Well tested services are good for the organizers, for the teams
and for your karma ;-)

Good testscripts are essential to the CTF’s success

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

How to begin

Some easy steps to follow. . .

Idea for a service

Suited as a CTF service?

→ Can it be used to store and retrieve (key, value) pairs?
(Flags)

→ Yes? Good.

Implement the service

Write the testscript, test it with the service

Add vulnerabilities

Test it again

. . . and again!

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Design principles for CTF services

Implement useful functionality

→ Don’t think of flags, think of real world data

Keep code and protocol quality high, but

Violate the RFCs twice

Write stable code

Write secure code first, add vulnerabilites later

Good code is well tested code

Vulnerabilities must be in your code, not in 3rd-party libs

Be aware of your vulns’ impact

Mix easy and hard to find vulnerabilities

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Design principles for CTF services

Writing a CTF service is not a programming exercise.

Write your service in a language you know well

However, you will learn a lot about your system

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

The simplest service ever

Two important things every service must be able to do:

Accept a key and a value

Send the value when key is requested

For most services, both actions are very complicated

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

The simplest service ever

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Real world example: da-op3n 2008 ircd

How flags were stored and retrieved. . .

IRC daemon with ChanServ and NickServ written in python

Flags were stored by registering channels

→ FlagID: Channel name, Flag: Channel topic

STORE: testscript joins a channel, registers nick and registers
channel

RETRIEVE: testscript joins channel, waits for chanserv to set
correct topic

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Common misconceptions
Design principles
Some examples

Real world example: da-op3n 2008 ircd

How you could steal flags. . .

Join #irclogs, get a message for every registered channel

Become operator (default password), then use ChanServ listall
command

Use broken MODE command to become operator

+s chanflag was not respected → repeatedly call LIST, until a
flag-channel is discovered

Use SQL injections (simple injections didn’t work, though)

Bypass various broken permission checks

Become super operator using broken OPER command, then
inject python code

→ Fix the OPER command, do not remove the injection
functionality

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Writing good testscripts

Writing good services is important, but

Writing good testscripts is crucial

It’s pretty hard

Actually, it isn’t, but it takes time ;-)

Think like a mathematician working on a proof

→ Nothing is guaranteed, unless you ensure it is

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Requirements

Testscripts must be much more flexible than services.

Write platform independent code

→ You don’t know where they will run

→ Distributed execution possible

Test your code on various platforms

Produce debug output

→very important for gamemasters

Deal gracefully with all errors

Write efficient code

→ n ·m processes in parallel (max), n == num. of teams,
m == num. of testscripts

Write secure code

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Write secure code

Gameservers are off limits

Teams still try to exploit them

Erraneously fixed services may send garbage

Erraneously fixed services are unpredictable

Secure code is stable code

Testscripts must be stable

CTF is about security, so set a good example ;-)

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Formalities

Important rules for testscripts

Do not fork

→ Threading is OK

Set memory limits

Each testscript can run n times in parallel, n == number of
Teams

Guarantee: Only one testscript per (team, service) at any time

Maximum runtime: 60 seconds, after that: KILL -9

Minimize startup overhead

→ Do not use Java, C#,. . . to code your testscript

(Coding a service in Java is perfectly OK)

Testing must be stateless

Gameserver / Testscripts have no special privileges

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Stateless testing

Teams may “reset” their vulnimages at any time

→ Testscripts must still work!

It is OK to create accounts, but

Do not assume an account lives forever

→ If an account doesn’t exist anymore, create a new one

Test that this actually works!

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

No special privileges

The Gameserver / the testscripts have no special privileges

Test normal service functionality

There are no STORE FLAG / RETRIEVE FLAG functions!

Flags are normal data

→ Bank account data

→ IRC Channels/topics

→ S.*VZ userdata

If an account is needed, the testscript must create it

No usage of admin accounts

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

STORE / RETRIEVE

If your STORE routine fails, the flag is discarded

Discarded flags cannot be captured

But: teams want to capture flags

→ If there is a slight chance a flag reached the service, do not
discard it

Probe for additional functionality during RETRIEVE, not
STORE

There’s an extra error type: Service lacks functionality

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

HC’s testscript template ;-)

Testscript template in python

Works with hc’s gameserver ;-)

Common structure for all testscripts is good

Python is nice and quite platform independent

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Testscript template ;-)

Use die(REASON) to quit. Always

Use LineReader(SOCKET) to create a limited line reader

→ LineReader reads up to 8192 bytes, then exits with an
overflow error

→ Adjustment needed if your service sends more data, (8192
reasonable default)

Use except(l, regexp, error) to wait for an answer

→ l: LineReader, regexp: what to look for, error: what to
throw if regexp isn’t read in time

Use randflag() to generate an invalid flag

→ Invalid flags are indistinguishable from valid flags

Write your testing code in store() and retrieve()

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Testscript template: STORE routine

#!/usr/bin/env python2.5
def store((ip, flagid, flag)):

seed(time())
s = getsock()
try: s.connect((ip, 25))
except: die(’conn’) # Connection refused or timeout
s.settimeout(10.0)
lr = LineReader(s)
if random() < 0.5: pass
else: pass 10

(hostid, bar) = expect(lr, ’[0-9]{3} (.+)ESMTP(.+)’, ’greeting’)
s.sendall("HELO hcesperer.org\n")
sys.stderr.write("Host identified itself as %s\n" % hostid)
sys.stderr.write("===== SUCCESSFULLY STORED FLAG =====\n")
die(’allok’)

#vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Overview
Formalities
Using the testscript template

Testscript template: Error codes

#!/usr/bin/env python2.5
ERR OK = 0 # All OK
ERR CONNECTION = 1 # Connection refused / connection attempt timed out
ERR WRONGFLAG = 5 # A wrong flag / no flag was returned
ERR FUNCLACK = 9 # The service lacks functionality
ERR TIMEOUT = 13 # Done automatically by the scorebot under normal circumstances
ERR UNKNOWN = 17 # Temporary status – do not use unless you’ve got a very good reason to do so
ERR GENERIC = 21 # Be sure to include a descriptive message if using this error
ERR PROTOCOL = 25 # Protocol violation
shit = {’conn’: ("Unable to connect to the service", ERR CONNECTION), 10

’greeting’: ("The server didn’t greet correctly", ERR PROTOCOL),
’allok’: ("Everything is fine", ERR OK)}

#vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Installation
Configuration
The game

Prequisites

PostgreSQL 8.1 or later

python 2.5 or later

bzip2

JRE 1.6 or later

telnet

→ telnet readline extension (ask alech ;-)

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Installation
Configuration
The game

CTF Gameserver configuration

Visit http://ctf.hcesperer.org/gameserver/installation.html

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Installation
Configuration
The game

Rating advisories

accept(advisoryID, pointsToAward, comment)

→ accept(1, 2, “Good one, two points!”)

reject(advisoryID, comment)

→ reject(2, “Write beter English next time!”)

delete(junkID)

→ Use delete only to delete junk.

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts



Writing interesting CTF Services
Writing good testscripts

Using the gameserver

Installation
Configuration
The game

Upcoming CTFs

25c3-CTF http://ctf.hcesperer.org/25c3ctf

USCB http://google.com/search?q=uscb+ctf ;-)

CIPHER 5 http://www.cipher-ctf.org/

→ MRMCDs111b 6. September 2008 in Darmstadt

Hans-Christian Esperer, CDA Writing interesting CTF Services and good testscripts


	Writing interesting CTF Services
	Common misconceptions
	Design principles
	Some examples

	Writing good testscripts
	Overview
	Formalities
	Using the testscript template

	Using the gameserver
	Installation
	Configuration
	The game


